
1

System Design
Taking Informed Decisions

Christian Schulte
School of Information and Communication Technology
KTH – Royal Institute of Technology
Sweden

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 2

Designing a Constraint 
Programming System� Model� entities, properties, description, reasoning, 

terminology, …� expressiveness, simplicity, purpose, …� Architecture� components, interfaces, interaction, …� simplicity, expressiveness, invariants, …� Implementation� data structures, algorithms, services, …� efficiency (space time), simplicity, robustness, …

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 3

Designing a Constraint 
Programming System� Model� entities, properties, description, reasoning, 

terminology, …� expressiveness, simplicity, purpose, …� Architecture� components, interfaces, interaction, …� simplicity, expressiveness, invariants, …� Implementation� data structures, algorithms, services, …� efficiency (space time), simplicity, …

all require 
taking design 

decisions

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 4

Design Decisions� Goal: what does one want to achieve?� generally, multiple criteria� Decision space� how many alternatives� their properties (cost, efficiency, simplicity …)� Dependencies among decisions� independent? causal? interrelated?

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 5

Here: Design Decisions 
for Finite Domain CP Systems� Scope of this talk� what are important decisions?� how informed are common decisions?� what are good decisions?� what are bad or uninformed decisions?� Restriction to rather basic decisions� finite domains and tree search� level: architecture and implementation� many are folklore and the thing to do (?)

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 6

Approach� Design decisions discussed� search: state restoration� propagators: which one to run next� propagators: combining filter algorithms� variables: events and dependencies� variables: domain representation� Decisions for Gecode� how did we reason (if we did at all…)



2

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 7

Gecode� Current research platform� Used for example decisions in this talk� More information on Gecode itself� later in system presentation

www.gecode.org

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 8

Notation and Background� Propagator� implementation of a constraint� example: alldifferent, linear, extensional, …� Time and space figures� from some 20 benchmarks� paper in preparation (with Peter Stuckey)� results available upon request� Anything else: interrupt me…

Search

State restoration

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 10

State Restoration� Essential: backtrack to previous state� variable domains� propagators and their variable dependencies� propagator state� Approaches� trailing record and undo changes� copying put complete state aside� recomputation recompute state on need

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 11

Trailing� Trailing stores undo and redo information� interleaved with constraint propagation� uses trail data structure� update: put 〈location,content〉� undo: write location � content� every choice point: put mark or record top of trail� Requires� all updates trail-aware� for example: domain change, change of 
dependency information, …

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 12

Time Stamping� Problem: multiple change of same location� for example: multiple narrowing of domain� only original value needs restauration� intermediate values not needed� Solution: local time stamp on modified entity� new choice point increase global time stamp� upon modification trail, if local stamp earlier
update local stamp

[Aggoun & Beldiceanu 90] [Aggoun & Beldiceanu 91]



3

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 13

Semantic Trailing� Trail abstract operations rather than 
low-level updates� typically: establish equivalent but not same 

state� examples: CLP(R) [Jaffar ea, 1992], CLP(R-lin) [Van 

Hentenryck & Ramachandran, 1995], MAC [Régin, 2005]

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 14

Copying� Take a complete copy of the system 
state� simple� confined to copy routine� rest of system orthogonal� Infeasible due to excessive memory 
requirements [Schulte 1999]

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 15

Recomputation� Remember path in search tree to 
recompute nodes� requires at least one copy to start from� Path representation� number of alternative [Schulte, 1997]� constraints from labeling (batch 

recomputation [Choi ea, 2001] ) (decomposition-
based search [Michel & Van Hentenryck, 2004] )

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 16

Impact of Path Representation� Naïve: number of alternative� propagate, replay alternative, propagate, 
replay alternative, …� O(n) fixpoints (full propagations)� Batch: constraints from labeling� add constraint, add constraint, …, propagate� O(1) fixpoints� more: cost of propagation less than number 
of constraints added

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 17

Properties of 
Recomputation with Copying� Simplicity� copying orthogonal to propagation� Expressiveness� parallelism, moves in search tree� Efficiency� little space due to recomputation� amazingly (truly) efficient due to batch 

recomputation� space versus time configurable

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 18

Recomputation Optimizations� Adaptive recomputation� create additional copies in between upon 
recomputation� Branch-and-bound� naïve: recompute from copy, add constraint 
from last solution to yield better solution 
(often repeated)� better: add constraint to copy and possibly 
fail entire subtree



4

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 19

Decision in Gecode� Batch recomputation and copying� not that simple (tricky invariants)� but confined to search!� very efficient (time and space)� rather complicated search engines (but we 
have good abstractions [Tack, 2004])� Decision� ultimately intrusive: affects everything� informed: to some extent (batch to a lesser)

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 20

Informed Decision?� Trailing works� it clearly does� it clearly does better for Prolog� Recomputation with copying works better� simpler, orthogonal, more expressive� key issue for us: parallelism for free!

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 21

General Impact of 
State Restoration Decision� Influences the entire system� data structures and operations� Trailing� small data structures (eg: list)� operations with local effect� Copying� compact data structures (eg: array)� operations can do whatever they want

Propagators

Which one to run next

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 23

Pending Propagators� When variable x modified during 
propagation� all propagators depending on x must be run 

eventually� Possibilities� immediately: stack� as late as possible: queue� decide on cost: priorities (cost)

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 24

Queue � Stack� Stack shows pathological behavior in 
some cases� can increase runtime by 3 orders� in average: almost twice the runtime� Pathological behavior� cheap, expensive global, cheap, expensive 

global, …� can that fixed by cost: no (jumping ahead)



5

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 25

Propagator Costs� Define cost metric� unary, binary, ternary, linear, quadratic, 
cubic, crazy� fine metric: low and high variants� coarse metric: collapse some cost values� Organize according to cost� one queue for each cost category� pick always from cheapest queue first

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 26

Using Costs� Impact of cost metric on runtime� fine -7.4%� medium -6.3%� coarse -5.6%� Variations� fine + stack +23.9%� inverted +107.5%

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 27

Using Costs� Number of propagators executed 
increases� from 3.8% to 7.0%� Reason: iterated fixpoints� cheap fixpoint� single more expensive propagator� cheap fixpoint� …

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 28

Decision in Gecode� Medium metric, queue, dynamic cost� protection from pathological behavior� efficiency (to a lesser extent)� quite complicated: minimize number of cost 
computations (due to dynamic cost)� enabler of more optimizations (next)� Informed decision� for costs: yes� for dynamic costs: not really� for priorities: not at all, why not impact?

Propagators

How to combine them

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 30

Combining Filter Algorithms� Consider alldifferent(x)� naïve variable becomes assigned
remove value from other variables
cheap� domain find and prune Hall sets [Régin, 1994]

expensive� Common approach� first naïve, then domain� applicable to many global constraints� but how?



6

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 31

Possible Decisions� Nothing� only do expensive but strong� Immediate� do cheap immediately followed by expensive� Multiple propagators� create propagators for cheap and expensive� with according costs� other cheap propagators before expensive

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 32

Better: Staging� Single propagator [Schulte & Stuckey, 2004]� idle and must be run: set stage one� stage one: do cheap
set stage two� stage two: do expensive
set idle� Optimizations� stage one finds stage two not needed: idle� more stages (possibly)

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 33

Comparison� Relative to nothing: time memory� immediate -1.6% 0.0%� multiple -4.8% +3.0%� staging -6.5% 0.0%� Examples with costly global constraints� immediate just around -2%� staging often -16% up to -40% time

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 34

Decision in Gecode� Staging� simple (but for every propagator)� efficient� no memory cost� requires sufficiently fine cost metric� requires ability to change propagator cost� Informed decision� principle: yes� implementation choice (based on modification events): no

Constraint Variables

Events and dependencies

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 36

Dependency Management� Propagator knows variables� perform propagation on them� Variables know propagators� propagators depending on variable� using events to avoid useless execution� time and space critical



7

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 37

Events� Which domain changes affect 
propagator� Events when computing new domain� fix(x) variable becomes assigned� bnd(x) bound changes� dom(x) domain changes� events clearly overlap� some systems distinguish lbc and ubc

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 38

Events: Really?� Events combine two aspects� how a variable domain changes� when a propagator needs to be run� Better: separate concerns� modification event (ME): how is a domain 
modified� propagation condition (PC): for which 
modification events propagator must run 

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 39

Modification Events
Propagation Conditions� Modification events can be rich� fix, bnd, dom, ubc, lbc, …� but also: ubc and new upper bound smaller 

than stated (hole in domain), …� Propagation conditions can differ� just fix and dom� fix, bnd, dom� later: the more conditions the more memory� good for set variables

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 40

Relation ME � PC� Give relation between ME and PC� relation holds: propagator must be run� ME: fix, bnd, dom� PC: fix, bnd, dom

(fix, fix ) (fix, bnd ) (fix, dom )
(bnd, bnd ) (bnd, dom ) 
(dom, dom ) 

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 41

Implementing Dependencies
Suspension Lists� When modification event occurs� process all elements from list of related 

propagation conditions� traversal reasonably efficient� takes two memory cells per dependency

fix

bnd

dom
pointer to propagator

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 42

Gecode: Dependency Arrays� When modification event occurs� process elements in array areas for related 
propagation conditions � traversal very efficient� takes one memory cell per dependency

fix

bnd

dom

pointer to propagator

end



8

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 43

Dependency Arrays: Adding� When adding new dependency� make one free entry (possibly resize)� by moving pointers into array and single element for 
propagation condition� requires time in number of propagation conditions

fix

bnd

dom

pointer to propagator

end

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 44

Dependency Arrays � Trailing� Semantic trailing� when adding or removing dependency just 
trail that fact� undo operation is easy� Low-level trailing� when adding or removing: several pointers 
into array and array elements change� Dependent design decision

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 45

How Many Propagation 
Conditions?� Change time space� fix, dmc -7.8% +3.9%� plus bnd -7.8% +9.9%� plus ubc, lbc -6.3% +15.5%� Propagation steps decrease drastically� but: do nothing is rather cheap…� but: maybe only in some situations and for 

some systems…

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 46

Discussion� Gecode decision: fix, bnd, dmc� efficiency� applicability� memory usage� protection from pathological behavior� separation of concerns� Informed decision� yes for which conditions: choices explored� not really for dependency arrays� clearly for events versus conditions

Finite Domain Variables

Domain representations

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 48

Variable Domains� Example: finite domain variables� similar situation for other domains� What are good implementations� which data structures� which operations



9

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 49

Data Structures for Variables� Sorted simple-linked list of intervals� simple� commonly used� good for iteration (constant time)� bad for test and update (linear time)

0 1 3 5 7 7 9 12

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 50

Data Structures for Variables� Sorted simple-linked list of intervals� with bound information� with cardinality information� good for accessing bounds information

0 1 3 5 7 7 9 12

0 12 10

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 51

Data Structures for Variables� Sorted double-linked list of intervals� provides quick access to both ends� decreases runtime by 50%� commonly used

0 1 3 5 7 7 9 12

0 12 10

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 52

Data Structures for Variables� Bitvector� quick test and set (constant time)� not easy to iterate (non-constant time)� difficult to scale to large domains

1

0

1

1

0

2

1

3

1

4

1

5

0

6

1

7

0

8

1

9

1

10

1

11

1

12

0

13

0

14

0

15

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 53

Design Decision in Gecode� Compromise between time and space� doubly linked list� single pointer for both links� uniform presentation� Optimize common cases� keep bounds information� keep size of holes in domain (unchanged 
when only bounds information changes)

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 54

Single-Pointer Doubly-Linked� Store in element p⊕n (bitwise xor)� p is previous, n is next� For forward iteration � previous p known: next is p⊕(p⊕n)=n� Restricted functionality� allows iteration but not random access� no time overhead� Saves memory (32 bit integers)� 25% for 32bit, 33% for 64bit



10

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 55

Discussion� Criteria� efficient (bidirectional iteration)� memory usage� simple� uniform (no hybrid)� Informed� not really (does okay in comparison)� recent attempt by Minion: choose 
representation at compile time

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 56

Set Variables� Way more intricate design space� Different expressiveness� lub and glb [Puget, 1992] [Gervet, 1997]� full domain [Hawkins & Lagoon & Stuckey, 2005]� length-lex domains [Gervet & Van Hentenryck, 2006]� How to implement them� implementations known, but variations?

Summary

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 58

Summary Overview� Design decisions in systems� Design decisions in papers� Area maturity� Fundamental decisions� System research

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 59

Design Decisions in Systems� Disciplined and informed reasoning 
mandatory � well-understood systems� flexible systems: revising decisions� efficient systems: design-space explored� interesting systems: you can say something 

about the system (not only that it “works” or 
that it is “fast”) 

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 60

Design Decisions in Papers� The easiest way to write a good paper� discuss a selection of decisions…� present your informed decisions…� choose abstraction level for decisions not for 
underlying system…� … paper accepted� Good reasoning about decisions� others can judge merits for their systems� makes impact likely



11

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 61

Area Maturity� Only basic decisions discussed here� but many decisions not that well-informed� General� lack of design alternatives known and 
published� poor culture� poor visibility

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 62

Area Maturity� Only basic decisions discussed here� but many decisions not that well-informed� General� lack of design alternatives known and 
published� poor culture� poor visibility

That’s why I am 
interested in 

CP-Tools!

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 63

Fundamental Decisions� Some decisions are assumptions� compute fixpoints before search� only communicate via variables� choice of propagator rather than choice of 
constraint� …� typically on level of model� very interesting, very challenging

CP-Tools 06 C. Schulte, System Design: Taking Informed Decisions 64

System Research� Not only about implementations� Even more important: models and 
architectures� Common models and architectures lead to a 
coherent and thriving community!� Or, briefly: system research is just like any 
other type of research� that is: should be!


